
Volume xx(200y), Number z, pp. 1–10

Benchmarking and Implementation of Probability-Based
Simulations on Programmable Graphics Cards

Stanimire Tomov, Michael McGuigan, Robert Bennett, Gordon Smith, John Spiletic

Information Technology Division, Brookhaven National Laboratory, Bldg. 515, Upton, NY 11973
tomov@bnl.gov, mcguigan@bnl.gov, robertb@bnl.gov, smith3@bnl.gov, spiletic@bnl.gov

Abstract
The latest Graphics Processing Units (GPUs) are reported to reach up to200billion floating point operations per
second (200Gflops19) and to have price performance of0.1 cents per M flop. These facts raise great interest in
the plausibility of extending the GPUs’ use to non-graphics applications, in particular numerical simulations on
structured grids (lattice). In this paper we (1) review previous work on using GPUs for non-graphics applications,
(2) implement probability-based simulations on the GPU, namely the Ising and percolation models, (3) implement
vector operation benchmarks for the GPU, and finally (4) compare the CPU’s and GPU’s performance. Original
contribution of this work is implementing Monte Carlo type simulations on the GPU. Such simulations have a wide
area of applications. They are computationally intensive and, as we show in the paper, lend themselves naturally
to implementation on GPUs, therefore allowing us to better use the GPU’s computational power and speedup the
computation. A general conclusion from the results obtained is that moving computations from the CPU to the
GPU is feasible, yielding good time and price performance, for certain lattice computations. Preliminary results
also show that it is feasible to use them in parallel.

Categories and Subject Descriptors(according to ACM CCS): I.6.3 [Computing Methodologies]: Applications;
I.3.1 [Computing Methodologies]: Graphics processors; B.8.2 [Hardware]: Performance Analysis.

1. Introduction

There are several factors that motivated us to investigate the
plausibility of using programmable GPUs for numerical sim-
ulations on structured grids. These factors are the GPUs’

• high flops count,
• compatible price performance, and
• better than the CPU rate of performance increase over

time.

To be specific, nVidia’s NV30 graphics card is advertised
to have a theoretical operation count of 200 Gflops (see the
NV30 preview19 or Table 1, where we summarize the re-
sults of a GPU-CPU comparison in performing graphics re-
lated operations). Taking into account the price of the NV30
graphics card we get the low 0.1 cents per M flop. Also, the
current development tendency shows a stable doubling of the
GPU’s performance every six months, compared to doubling
the CPU’s performance for every 18 months (a fact valid for
the last 25 years, known asMoore’s law).

Review of the literature on using GPUs for non-graphics
applications (subsection 1.1) shows that scientists report
high speedups of the GPU compared to the CPU for low
precision operations. Several of the non-graphics applica-
tions that make use of the recently available 32-bit floating
point arithmetic report much lower speedups. Often adver-
tisements will report “extremely” high performances and be
vague about the precision of the computations. For exam-
ple, the advertised 200 Gflops in19 can not be achieved for
32-bit floating point operations (Figure 1, Right gives the
NV30 graphics card specifications). To get a better under-
standing of the GPU capabilities for scientific computations
we decided to develop benchmarking software for the GPU’s
32-bit floating point operations.

In the rest of the paper we will refer to flins as 32-bit float-
ing point GPU assembly instructions per second. Such in-
structions perform operations on 4D vectors of floating point
numbers, so we will refer to flops as flips times four. It will

to apper in Computers & Graphics

2 Stanimire Tomov et al / Probability-Based Simulations on GPUs

be clear from the context if we refer to a particular arithmetic
operation.

Frames per second using
Problem size

OpenGL (GPU) Mesa (CPU)

11,540 189 8

47,636 52 1.71

193,556 13 0.44

780,308 3.28 0.12

Table 1. GPU vs CPU in rendering polygons. The GPU
(Quadro2 Pro) is approximately 30 times faster than the CPU
(Pentium III, 1 GHz) in rendering polygonal data of various
sizes.

Probability-based models, discussed in section 2, have
a wide area of applications. They are computationally in-
tensive and lend themselves naturally to implementation on
GPUs, as we show in the paper.

1.1. Literature review

The use of graphics hardware for non-graphics applications
is becoming increasingly popular. A few examples of such
uses are matrix-matrix multiplication9, visual simulations of
boiling, convection, and reaction-diffusion processes6, non-
linear diffusion17, multigrid solver1, 5, Lattice Boltzmann
Method (LBM) 12, fast Fourier transform (FFT)14, and 3D
convolution7. For a more complete list and more informa-
tion on general purpose computations that make use of the
GPU see the GPGPU’s homepage:
http://www.gpgpu.org/ .

In all the cases the non-graphics computations are ex-
pressed in terms of appropriate graphics operations. These
graphics operations are executed on the graphics card and
the results are used to interpret the results of the original
non-graphics computations. Up until recently the output of
the graphics operations was constrained to integers, which
was a serious obstacle for a meaningful use of many of the
non-graphics algorithms developed for graphics hardware.
For example, M. Rumpf and R. Strzodka17 used 12-bit arith-
metic (InfiniteReality2 graphics card) for nonlinear diffusion
problems, E. Larsen and D. McAllister9 used 8-bit arith-
metic (GeForce3 graphics card) for matrix-matrix multipli-
cations, etc. The low accuracy of the graphics cards compu-
tations encouraged research in complicated software tech-
niques to increase the accuracy. See for example the range
scaling and range separation techniques developed in12.
Even when 16-bit floating point precision became available
(in GeForce4), it was not uniformly provided throughout the
graphics pipeline. This was the reason why C. Thompson’s
et al. 20 general-purpose vector operations framework was

not able to retrieve the computational results without loss of
precision.

Currently, graphics cards like the nVidia Quadro FX 1000,
known also as NV30, support 32-bit floating point opera-
tions throughout the entire graphics pipeline. Features like
programmable vertex and fragment shaders (see section 1.2)
allow software developers to easily modify the graphics
pipeline, which is used in most of the non-graphics ap-
plications. The programmability also becomes easier since
more alternatives to assembly programming become avail-
able. One example is the high level language Cg15.

By porting non-graphics applications to the GPU, scien-
tists try to achieve computational speedup or upload some
of the computations from the CPU by using the GPU as co-
processor. Currently significant speedups of GPU vs CPU
are reported if the GPU performs low precision compu-
tations. Depending on the configuration and the low pre-
cision used (often 8-bit) scientists report speedups in the
range of 25− 30 times, and as high as 60 times. Adver-
tisements that make claims such as that GeForce 4 GPUs
are capable of 1.2 trillion operations/s or that a supercom-
puter made out of PlayStations is capable of 0.5 trillion op-
erations/sec11 are based on certain types of low precision
graphics operations. Our experience shows that currently
certain general purpose applications that use 32-bit float-
ing point arithmetic on NV30 can be 2− 6 (for the con-
figuration specified) times faster than their equivalent run-
ning on Pentium 4, 2.8 GHz. This was confirmed in our
applications and benchmarks, the multigrid solver in1, the
shaders’ speeds using 32-bit floating point arithmetic from
http://www.cgshaders.org , etc.

1.2. Programmable graphics cards

Old graphics cards had a fixed function graphics pipeline, a
schematic view of which is given on Figure 1, Up. The oper-
ations in the dashed rectangle were configured on a very low
level and were practically impossible to change by software
developers. In August, 1999 nVidia released the GeForce
256 graphics card, which allowed a certain degree of pro-
grammability of its pipeline. In February, 2001 nVidia re-
leased the GeForce3 GPU, which is considered to be the first
fully programmable GPU. Here fully programmable means
that developers were able to provide their own transforma-
tions and lighting (T & L) operations (vertex shaders) to
be performed on the vertices (by the Programmable vertex
processor) and their own pixel shaders to determine the fi-
nal pixels color (executed on the Programmable fragment
processor). Both the vertex and pixel shaders are small pro-
grams, which when enabled, replace the corresponding fixed
function pipeline. The programs get executed automatically
for every vertex/pixel and can change their attributes. Origi-
nally the vertex and pixel shaders had to be written in assem-
bly. The constantly increasing functionality provided by the
graphics cards allows more complex shaders to be written.

to apper in Computers & Graphics

Stanimire Tomov et al / Probability-Based Simulations on GPUs 3

Figure 1: Up: Graphics pipeline. The dashed rectangle marks the fixed function graphics pipeline (with T&L standing for
transformation and lighting). Additional hardware, programmable vertex and fragment processors, available in newer graphics
cards provide the developers with opportunity to change the fixed function pipeline. Down: Our system configuration and
CPU/GPU performance specifications (Pentium 4 CPU and NV30 GPU).

To simplify the implementation of such shaders nVidia re-
cently released a high level shader language, called Cg10, 15.
Cg stands for “C for graphics” since it has syntax similar to
C.

2. Probability-based simulations

In this section we briefly describe the models that we imple-
mented on the GPU, namely the Ising (Section 2.2) and the
percolation (Section 2.3) models. Both methods are consid-
ered to be of Monte Carlo type (Section 2.1).

2.1. Monte Carlo simulations

Monte Carlo (MC) methods are used in the simulation of
a variety of phenomena in physics, finance, chemistry, etc.
MC simulations are based on probability statistics and use
random numbers. The name derives from the famous Monte
Carlo resort and is associated with roulette as a simple way
of generating random numbers.

A classical example of using MC methods is to compute
the area of a circle. First the circle is circumscribed by a
square, then random locations within the square are gener-
ated, and finally

circle area
square area

≈ locations within the circle
number of generated locations

,

to apper in Computers & Graphics

4 Stanimire Tomov et al / Probability-Based Simulations on GPUs

where the approximation greatly depends on the number of
locations generated and the “quality” of the random loca-
tions generator. Our aim is to use graphics cards for the
fast generation of extremely large amounts of random num-
bers, and to model various Monte Carlo type simulations.
To be specific, we would like to achieve performance close
to the theoretically possible maximal performance, which is
16 Gflops for the fragment processors of the NV30 graphics
card.

A problem of general interest is the computation of ex-
pected values. For example, assume we have a system that
can be in any of its statesSi , i = 1, ...,N with known proba-
bilities P(Si). Also, assume a quantity of interestF is com-
putable for any of the states. Then, the expected value forF ,
denoted byE(F), is given by

E(F) =
N

∑
i=1

F(Si)P(Si). (1)

The Ising model, described in Section 2.2, is a MC method
for computing such expected values. The difficulty in com-
putingE(F) is whenN becomes large. If we consider a 2D
system of particles, say on a 1024×1024 lattice, and every
particle is modeled to havek possible states, thenN is of

orderk10242
.

The accuracy of the Monte Carlo simulations, as men-
tioned above, depends on the quality of the random num-
ber generator. Computer programs generate pseudo-random
numbers. For the applications that we consider we used a
linear congruential type generator (LCG). The form is

R(n) = (a∗R(n−1)+b) modN.

Fixing a starting valueR(0), called seed, uniquely deter-
mines the numbers generated. LCGs are fast, easy to com-
pute, and reasonably accurate. Furthermore, they lead to uni-
formly distributed random numbers and are the most fre-
quently used. The LCGs are well understood and studied.
One has to be careful in the choice of the constants and
the seed. Undesirable patterns may occur in applications that
considern-tuples of numbers generated by LCGs (see13).

2.2. Ising model

The Ising model, a simplified model for magnets, was intro-
duced by Wilhelm Lenz in 1920 and further developed later
by his student Ernst Ising. The model is on a lattice, in our
case two dimensional. A “spin”, pointing up or down, is as-
sociated with every cell of the lattice. The spin corresponds
to the orientation of electrons in the magnet’s atoms. There
are two opposing physics principles that are incorporated in
the Ising model: (1) minimization of the system’s energy,
achieved by spins pointing in one direction, and (2) entropy
maximization, or randomness, achieved by spins pointing
in different directions. The Ising model uses temperature to
couple these opposing principles (see an illustration on Fig-
ure 2). There are many variations of the Ising model and

its implementation (see3 and the literature cited there). The
computational model that we used is described as follows.

We want to be able to compute various expected val-
ues (equation 1), such as expected magnetization and ex-
pected energy. To compute expected magnetization,F(Si)
from equation (1) is the magnetization of stateSi , defined as
the number of spins pointing up minus the number of spins
pointing down. To compute expected energy,F(Si) is the en-
ergy of stateSi

E(Si) =− ∑
< j,k>

Si(j)Si(k),

where the sum is over all lattice edges with< j,k > being
the edge connecting nearest neighbor sitesj andk, Si(j) is
the spin for sitej of stateSi with values 1, for spin pointing
for example up, or−1, for spin pointing down.

The idea is not to compute the quantity described in equa-
tion (1) exactly, since many of the states are of very low
probability, but to evolve the system into “more probable”
states and get the expected value as the average of several
such “more probable” states. The user inputs an absolute
temperature of interestT in Kelvin, and probabilityp∈ [0,1]
for spins pointing up. Using this probability we generate a
random initial state with spins pointing up with probabil-
ity p. The procedure for evolving from this initial state into
“more probable” states is described in the following para-
graph. The theoretical justification of methods dealing with
similar sequences evolving from state to state, based on cer-
tain probability decisions, is related to the so-calledMarkov
chains4.

The lattice is colored in a checkerboard manner. We define
a sweep as a pass through all white or all black sites. This is
done so that the order in which the sites are processed does
not matter. We start consecutive black and white sweeps. At
every site we make a decision whether to flip its spin based
on the procedure

1. Denote the present state asS, and the state with flipped
spin at the current site asS′.

2. Compute4E≡ E(S′)−E(S).
3. If 4E < 0 acceptS′ as the new state.
4. If 4E≥ 0, generate a random numberR∈ [0,1], and ac-

ceptS′ as the new state if

R≤ P(S′)
P(S)

= e−4E/(kT),

otherwise the state remainsS. In the last formula the
probabilityP(S) for a stateS is given by the Boltzmann
probability distribution function

P(S) =
e−E(S)/(kT)

N
∑

i=1
e−E(Si)/(kT)

,

wherek is a constant, known as the Boltzmann’s constant.

to apper in Computers & Graphics

Stanimire Tomov et al / Probability-Based Simulations on GPUs 5

Figure 2: Ising model visualization on lattices of size512×512. The red/blue regions correspond to spins pointing up/down.
Observe the spin clustering (related to energy minimization) for low input temperature (Left) and the randomness (related to
entropy maximization) for higher input temperatures (Right).

A standard Monte Carlo implementation of the Ising
model would involve a random traversing through different
sites of the lattice, and flipping or not the spin depending
on the outcome of the above procedure. The implementation
that we describe is influenced by one of M. Creutz’s3 simu-
lations of the Ising model. He uses the checkerboard sweeps
in a fully deterministic spin flipping dynamic, which does
not require generation of high quality random numbers and
yields one order of magnitude faster execution than conven-
tional Monte Carlo implementations. For proof of concept
in benchmarking the GPU we use the algorithm described,
which involves a richer variety of mathematical operations.
The checkerboard sweeps are crucial for the efficient use
of the GPU, since the GPU computations are performed on
passes over the entire lattice. Simultaneous update on all the
sites would not be a simulation of the Ising model, as shown
in 21.

2.3. Percolation model

The percolation model is a model for studying disordered
media. It was first studied by Broadbent and Hemmercley2

in 1957. Since then percolation type models have been used
in the study of various phenomena, such as the spread of dis-
eases, flow in porous media, forest fire propagation, phase
transitions, clustering, etc. The general scenario is when
a medium is modeled as an interconnected set of vertices
(sites). Values modeling the media and the phenomena of
interest are associated with the sites and the connections be-
tween them. Usually these values are modeling disordered
media with a certain probability distribution, and are ob-
tained from random number generators. A point (or points)
of “invasion”, such as the starting point of fire, disease, etc,
is given, and based on the values in the sites and the con-

nections, a probabilistic action for the invasion is taken. Of
particular interest is to determine:

1. Media modeling threshold after which there exists a span-
ning (often called percolating) cluster. This is an inter-
connected set of invaded sites that spans from one end of
the medium to another.

2. Relations between different media models and time to
reach steady state invasion or percolation cluster.

Using the basics of the percolation, as described above,
one can derive methods of substantial complexity. For ex-
ample, R. Saskin et al.18 presented a novel approach for
the clustering of gene expression patterns using percolation:
gene expressions are modeled as (1) sites containingmmea-
surements each, and (2) connections between all pairs of
sites. The connections have weights which represent the sim-
ilarity between the gene expressions. Based on the mutual
connectivity of the gene expressions, they come up with a
probabilistic percolation model to cluster the data.

Here, for proof of concept in benchmarking the GPU, we
implemented a simple percolation model with application to
diffusion through porous media (see Figure 3). The porous
media is modeled on a two dimensional lattice. First, we
specify porosity as a probabilityP of the site being a pore.
Then we go through all the sites and at each site (1) generate
a random numberR∈ [0,1], and (2) consider the site “pore”
if R≤ P, or solid otherwise. Finally, we consider an inva-
sion point, initialize a cluster to be the invasion point, and
start the process of spanning the initial cluster through the
porous space.

to apper in Computers & Graphics

6 Stanimire Tomov et al / Probability-Based Simulations on GPUs

Figure 3: Percolation model visualization. Seen is a snap-
shot of fluid spreading in 2D porous media (modeled on a
lattice of size512×512, porosity0.6).

3. Implementation details

The implementations of the models described are Cg frag-
ment programs, which are being invoked (and executed on
the GPU) by OpenGL application running on the CPU. To
do the OpenGL - fragment programs binding we used the
OpenGL Cg run-time functions described in the Cg toolkit
user’s manual15. The programming model is described in
the following paragraph.

The OpenGL application repeatedly executes the iterative
procedure:

• Prepare the input for the GPU pipeline;
• If the GPU executes a non-fixed function pipeline specify

the vertex or fragment programs to be used;
• If needed, read back the graphics pipeline output (or part

of it).

This programming model is standard. It is very often related
to the so-calledDynamic texturing, where on the first step
one creates a texture T, then a GPU fragment program uses
T in rendering an image in an off-screen buffer (called p-
buffer), and finally T is updated from the resulting image.

To be more specific, we have used
GL_TEXTURE_RECTANGLE_NVtextures, an exten-
sion to the 2D texture, which allows the texture di-
mensions not to be a power of 2. To initialize such
textures from the main memory we useglTex-
SubImage2D(GL_TEXTURE_RECTANGLE_NV,
...) . To replace (copy) rectangular image results
from the p-buffer to GL_TEXTURE_RECTANGLE_NV
textures we use glCopyTexSubIm-
age2D(GL_TEXTURE_RECTANGLE_NV, ...) ,
which is entirely done on the graphics card. We used the
floating point p-buffer that is distributed with the Cg toolkit
which is available on the Cg homepage16. For our fragment

programs we used fp30 profile with options set by the
cgGLSetOptimalOptions function.

The times in the benchmarking programs were measured
with thegettimeofday function. Since the OpenGL calls
are asynchronously executed we usedglFinish to enforce
OpenGL requests completion before measuring their final
execution time. The time measures were used to determine
the GPU’s performance.

We implemented the Ising model in 2D and 3D. In or-
der to efficiently do the black and white sweeps (see Section
2.2) through a 2D checkerboard lattice we represent the lat-
tice with 2 textures: one for the white and one for the black
sites. This is needed for the efficient execution of the Ising
model since implementation based on only one lattice will
haveif statements in the fragment program to distinguish
black/white sites, and consequently be slow (see Section 5).
Figure 4 demonstrates our representation of a 2D vector with
two textures. The extension from 2D to 3D is straightfor-
ward. The planes in thez axes of the lattice are represented
by pairs of textures (for the black and white sites), as in 2D.
We have two fragment programs: one to process the white
sites and one for the black. As in 2D we do consecutive black
and white sweeps. A sweep trough the white sites for exam-
ple is implemented as a loop over the white textures, which
are processed by the corresponding fragment program with
arguments the neighboring black textures.

We also note that having the data structures described al-
lows us to easily produce a real-time volume visualization of
the 3D simulation results. Since the data (the textures) reside
on the GPU its visualization will have very little overhead to
be visualized. We simply go through the textures from back
to front, based on the viewing direction, and map them to
the planes (rectangles ordered in the z axes) that they corre-
spondingly represent (see Figure 5).

The reduction operation over a vector is non-trivial to im-
plement. This operation is used to compute global sums (to-
tal energy in our case), dot products, etc. We implemented
it by defining textures of decreasing resolution. Then the re-
duction is done consecutively in a loop from the highest res-
olution texture to texture of size 1×1. A high resolution tex-
ture is mapped to its lower resolution texture. In the mapping
process the values in the pixels that get mapped to a single
pixel are reduced to a single value by fragment program.

4. Benchmarking the GPU

We wrote several fragment programs to benchmark the per-
formance of basic floating point vector operations on the
GPU. The results were compared with those on the CPU.
The specifications of the system on which we applied the
benchmark programs are given in Figure 1, Down. We per-
form vector operations, where the vectors are represented by
2D textures. Here we included computational results for tex-

to apper in Computers & Graphics

Stanimire Tomov et al / Probability-Based Simulations on GPUs 7

Figure 4: Representation of a checkerboard lattice, correspondingly a2D vector v of size m×n, with two textures W and B
accounting for the white and black sites.

Figure 5: A snapshot from the real-time volume visualiza-
tion of the3D Ising simulation results. Textures represent-
ing the computational domain are mapped with prescribed
transparency from back to front, based on the viewing direc-
tion, to the planes (rectangles ordered in the z axes) that they
correspondingly represent.

tures of sizes 256×256 and 512×512 (with corresponding
vector sizes equal to texture sizes times 4).

Table 2 gives the GPU performance for different floating
point vector operations. Table 3 is the corresponding CPU
performance.

The performance is measured as explained in section 3.
We performed our computations and measures on Linux Red
Hat 9 operating system. The computations in Tables 2 and 3,
and sections 5 and 6 are done using Linux driver display
4363 from April, 2003.

The operations measured are in the following formsa = c
(for the = operation),a+ = c (for the basic arithmetic op-

Lattice size (not necessary power of 2)
operation

256×256 512×512

= 0.00063 0.0024

+ , - , *, / 0.00073 0.0027

cos, sin 0.00089 0.0034

log, exp 0.00109 0.0039

∑ 0.00191 0.0086

Table 2. Time in seconds for different floating point vector
operations on the GPU (NV30). The vector sizes are lattice
size times 4.

Lattice size
operation

256×256 512×512

+ , - , *, /, ∑ 0.0011 0.0046

cos, sin 0.0540 0.0650

log, exp 0.0609 0.1100

Table 3. Time in seconds for different floating point vec-
tor operations on the CPU (2.8 GHz Pentium 4). The vector
sizes are lattice size times 4.

erations), anda = sin(a) (for thesin, cos, log, andexpop-
erations), wherea is a vector represented with a 2D texture
and c is a constant. The∑ operation denotes global sum.
The a = c operation (Table 2) is present in all of the oper-
ations considered. Its execution time includes overheads re-
lated to the graphics pipeline and time for transferring data
(reading and writing to the local GPU memory of four 32-
bit floating point values for each lattice vertex). Having the
time for this operation allows as to exclude it from the other

to apper in Computers & Graphics

8 Stanimire Tomov et al / Probability-Based Simulations on GPUs

Lattice size (not necessary power of 2)
128×128 256×256 512×512 1024×1024 2048×2048

GPU sec/frame 0.0007 0.0027 0.011 0.043 0.19

CPU sec/frame 0.0020 0.0069 0.028 0.116 0.55

Table 4. GPU (NV30) and CPU (2.8 GHz Pentium 4) performances in processing a single step of the 2D Ising model.

operations and get a better idea about their performance.
For example, adding a basic arithmetic operation to a frag-
ment program will increase the execution time on a lattice of
size 512×512 with 0.0003 seconds. Thus the performance
would be 5122/0.0003≈ 0.87 Gflips or approximately 3.5
Gflops. This is the performance to be expected for longer
fragment programs, where the overhead time would get sig-
nificantly small. Indeed, in section 5 we achieve this per-
formance for the 2D Ising model, which has a fragment pro-
gram of 129 assembly instructions. The overhead time is sig-
nificantly large compared to the other operations. This shows
that creating a library of different basic vector operations on
the GPU and using it for general purpose mathematical com-
putations would not be efficient. For example the basic arith-
metic operations on a 512×512 lattice would yield a perfor-
mance of approximately 0.39 Gflops (counting the overhead
time) instead of the much higher 3.5 Gflops (when the over-
head time becomes insignificant compared to the time to ex-
ecute a larger fragment program). The performance results
for the ∑ operation are expected since reduction has twice
the overhead of the other operations (the algorithm involves
twice larger data transfers).

Overheads related to data traffic are also observed on the
CPU, but they are more difficult to measure. For example the
basic operations would take less time to compute thana = c
(we use full compiler optimization). This suggests that the
time of the basic operations is a measure for these overheads.
Note that thecos, sin, log, andexpare significantly faster on
the GPU. Part of the reason is that they are accelerated on
the GPU by reducing the precision of their computation.

The results from the other benchmark problems that we
developed, namely the Ising and percolation implementa-
tions, are given in section 5. Measures for the CPU-GPU
communication speed are given in section 6, Table 5. The
communications measured use the AGP 8x port, which has
a theoretical bandwidth of 2.1 GB/s on the NV30 (Figure 1,
Down).

5. Performance results and analysis

We tested our Ising model implementation with results from
Michael Creutz’s3 implementation. As expected, for lower
input temperatures the minimization of the system’s energy
physical principle prevails, which is expressed by cluster-
ing of spins pointing in one direction (see Figure 2, Left).

For higher temperatures the entropy maximization physical
principle prevails, which is expressed by randomness in the
spin orientations (see Figure 2, Right).

We tested our percolation model implementation by ex-
perimentally confirming the well known fact that the per-
colation threshold, or in our case the porosity threshold for
fluid flow, in 2D is 0.592746 (see8). Figure 3 gives a snap-
shot of fluid spreading in 2D porous media.

Comparison between the GPU and CPU performances on
the 2D Ising model is given in Table 4. The CPU code is
compiled with full optimization. The results show that the
GPU implementation runs approximately 3 times faster than
the CPU’s implementation. We observe the same speedup in
our 3D implementation.

One performance drawback in implementing the Ising
model on the GPU is that currently GPUs, and in partic-
ular the NV30, do not support branching in the fragment
programs (see15, Appendix C, Step 9). This means that a
conditionalif/else statement would get executed for the
time as if all the statements were executed, regardless of the
condition. Originally we had implemented the checkerboard
execution pattern with conditional statement in the fragment
program, which had made the running time twice longer,
and thus the CPU’s and GPU’s performances comparable.
Another important consideration related to the GPU’s per-
formance is that the operations should be organized in terms
of 4D vector operations. For a full list of considerations for
achieving high performance see15, Appendix C.

6. Extensions and future work

Our implementation of the Ising and the percolation mod-
els were designed mostly to prove a concept and to be used
in benchmarking the GPUs floating point performance. Cur-
rently we are looking into other applications that would ben-
efit from using the GPU. We are working on Quantum Chro-
modynamic (QCD) applications and fluid flow simulations.
Such applications usually lead to large scale computations.
These computations are often impossible to perform on a
single GPU (or CPU) due to memory constraints. Therefore,
a main direction of our research is on the parallel use of pro-
grammable GPUs. Table 5 gives the different communica-
tion rates between the CPU and the GPU for lattices of dif-
ferent sizes. Although the results are far from the theoretical
maximum, AGP 8x graphics bus with bandwidth 2.1 GB/s,

to apper in Computers & Graphics

Stanimire Tomov et al / Probability-Based Simulations on GPUs 9

Lattice size (not necessary power of 2) ≈ speed
Operation

64×64 128×128 256×256 512×512 (MB/s)

Read bdr 0.00016 0.0002 0.0006 0.0024 14

Read all 0.00040 0.0015 0.0062 0.0250 167

Write bdr 0.00022 0.0003 0.0007 0.0024 14

Write all 0.00020 0.0008 0.0032 0.0120 350

Table 5. Communication rates between the CPU and the GPU for lattices of different sizes. The reading is done using the
glReadPixels function, writing the boundary is done using the glDrawPixels function, and writing the whole domain is done
using the glTexSubImage2D function.

the CPU-GPU communication speed will not be a bottleneck
in a commodity-based cluster.

7. Conclusions

Our analysis and benchmarking were mainly concentrated
on the NV30 fragment processors’ 32-bit floating point op-
erations performance. The results show that it is feasible to
use GPUs for numerical simulations. We demonstrated this
by banchmarking the GPU’s performance on basic vector
operations and by implementing two probability-based sim-
ulations, namely the Ising and the percolation models. For
these two applications, the applications cited in the litera-
ture overview, our vector operations benchmarks, and var-
ious nVidia distributed shaders we observed that the frag-
ment processors’ (nVidia NV30) 32-bit floating point per-
formance can be 2−6 times faster than the CPU for certain
applications. For example, we accelerated the Ising model
computation 3 times by implementing it on the GPU. Also,
GPUs tend to have a higher rate of performance increase
over time than the CPUs, thus making the study of non-
graphics applications on the GPU valuable research for the
future. Higher than the reported in this paper speedups in fa-
vor of the GPU are observed only in certain applications in-
volving lower precision computations. A reason for this dif-
ference is the larger traffic involved in 32-bit floating point
computations which traffic makes the GPUs’ local memory
bandwidth a computational bottleneck. Finally, we note that
the acceleration graphics ports provide enough bandwidth
for the CPU-GPU communications to make the use of paral-
lel GPUs computations feasible.

Acknowledgments

We would like to thank Beverly Tomov from Cold Spring
Harbor Laboratory, NY, for her attentive editing and re-
marks. We thank Michael Creutz from Brookhaven National
Laboratory, NY, for the discussions with him, his sugges-
tions, and advice about the models implemented.

References

1. Jeff Bolz, Ian Farmer, Eitan Grinspun, Peter Schröder,
Sparse matrix solvers of the GPU: Conjugate gradients
and multigrid, ACM Transactions on Graphics, 22(3),
July 2003.

2. S.R. Broadbent and J.M. Hammersley,Percolation pro-
cesses I. Crystals and mazes.Proc. Cambr. Phil. Soc.
53, 629-641 (1957).

3. Michael Creutz,Deterministic Ising Dynamics, Annals
of Physics 167 , 1986.

4. W.R. Gilks, S. Richardson, and D. J. Spiegelhalter (Edi-
tors)Markov Chain Monte Carlo in Practice, Chapman
& Hall, 1996.

5. Nolan Goodnight, Gregory Lewin, David Lue-
bke, and Kevin Skadron,A Multigrid Solver for
Boundary-Value Problems Using Programmable
Graphics Hardware, Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
Hardware (2003), pp. 102-111.

6. Mark J.Harris, Greg Coombe, Thorsten Scheuermann,
Anselmo Lastra,Physically-Based Visual Simulation
on Graphics Hardware, Graphics Hardware (2002), pp.
1-10.

7. M. Hopf and T. Ertl,Accelerating 3d convolution using
graphics hardware, IEEE Visualization (1999), pp 471-
474.

8. N. Jan,Physica A 266, 72 (1999).

9. E.Scott Larsen and David McAllister,Fast Matrix
Multiplies using Graphics Hardware, The Interna-
tional Conference for High Performance Computing
and Communications, 2001.

10. William R. Mark, R. Steven Glanville, Kurt Akeley,
Mark J. Kilgard,Cg: A system for programming graph-
ics in a C-like language, Proceedings of SIGGRAPH
(2003).

to apper in Computers & Graphics

10 Stanimire Tomov et al / Probability-Based Simulations on GPUs

11. J. Markoff, From PlayStation to Supercomputer for
$50,000, The New York Times, May 26, 2003.

12. Wei Li, Xiaoming Wei, and Arie Kaufman,Implement-
ing Lattice Bolzmann Computation on Graphics Hard-
ware, The Visual Computer (to appear).

13. G.A. Marsaglia, (Editors)Random numbers fall mainly
in the planes, Proc. Nat. Acad. Sci. 61, 25 (1968).

14. Kenneth Moreland and Edward Angel,The FFT on a
GPU, Graphics Hardware (2003).

15. NVIDIA Corporation, Cg Toolkit User’s Manual,
Release 1.1, February 2003, Internet address (accessed
on 08/2003):
http://download.nvidia.com/developer/cg/Cg_Users_Manual.pdf

16. NVIDIA Corporation,Cg homepage, Internet address
(accessed on 08/2003):
http://developer.nvidia.com/object/cg_toolkit.html

17. , M.Rumpf and R. Strzodka,Nonlinear diffusion
in graphics hardware, Proceedings EG/IEEE TCVG
Symposium on Visualization (2001), pp. 75-84.

18. R. Sasik, T. Hwa, N. Iranfar, and W.F. Loomis,Perco-
lation Clustering: a Novel Approach to the Clustering
of Gene expression Patterns in Dictyostelium Develop-
ment, Pacific Symposium on Biocomputing 6:335-347
(2001).

19. Spode’s Abode,GeForce FX Preview (NV30), Spode,
November (2002), Internet address (accessed on
10/2003):
http://www.spodesabode.com/content/article/geforcefx

20. C. Thompson, S. Hahn, M. Oskin,Using Modern
Graphics Architectures for General-Purpose Com-
puting: A Framework and Analysis, 35th Annual
IEEE/ACM International Symposium on Microarchi-
tecture (2002).

21. G. Vichniac,Physica D, 10 (1984), 96.

to apper in Computers & Graphics

